使用Python的mplfinance库
安装:`pip install mplfinance`
示例代码:
```python
import mplfinance as mpf
import pandas as pd
data = {
'Open': [100, 102, 101, 105],
'High': [103, 104, 106, 110],
'Low': [99, 100, 100, 103],
'Close': [102, 103, 105, 108],
'Volume': [1000, 1200, 1500, 1300]
}
df = pd.DataFrame(data, index=pd.date_range('2024-12-01', periods=4))
mpf.plot(df, type='candle')
```
使用matplotlib库
安装:`pip install matplotlib`
示例代码:
```python
import matplotlib.pyplot as plt
import pandas as pd
data = {
'Open': [10, 12, 9, 11],
'High': [13, 15, 12, 14],
'Low': [8, 10, 8, 9],
'Close': [11, 9, 11, 13]
}
df = pd.DataFrame(data)
plt.figure(figsize=(10, 6))
plt.plot(df['Open'], label='Open')
plt.plot(df['High'], label='High')
plt.plot(df['Low'], label='Low')
plt.plot(df['Close'], label='Close')
plt.legend()
plt.show()
```
使用yfinance库获取数据并使用mplfinance绘制
安装:`pip install yfinance`
示例代码:
```python
import yfinance as yf
import mplfinance as mpf
import pandas as pd
stock_data = yf.download('600519.SS', start='2023-01-01', end='2023-12-31')
print(stock_data.head())
stock_data = stock_data[['Open', 'High', 'Low', 'Close', 'Volume']]
mpf.plot(stock_data, type='candle')
```
使用pyecharts库
安装:`pip install pyecharts`
示例代码:
```python
from pyecharts.charts import Kline
from pyecharts import options as opts
data = [
[2320.26, 2320.26, 2287.3, 2362.94],
[2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92],
[2347.35, 2358.5, 2337.35, 2363.92],
[2416.35, 2432.5, 2295.35, 2445.92]
]
c = Kline()
c.add_xaxis(["2019/7/{}".format(i + 1) for i in range(6)])
c.add_yaxis("2019年7月份K线图", data)
c.set_global_opts(yaxis_opts=opts.AxisOpts(is_scale=True),
xaxis_opts=opts.AxisOpts(is_scale=True),
title_opts=opts.TitleOpts())
c.render("kline.html")
```
这些方法涵盖了从简单的Python脚本到复杂的金融分析软件的